DIRECTING AND STABILIZING EFFECTS OF SUBSTITUTED ACETYLENES IN HETEROCYCLISATION. EFFICIENT SYNTHESIS OF PYRROLIZIDINE ALKALOIDS.

P.M.M. Nossin and W.N. Speckamp^{*}, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.

Abstract: (+)-Trachelanthamidine and (+)-isoretronecanol have been synthesized via reductive cyclisation of the phenylthioacetylene imid 5.

The overall high reactivity of the cyclic α -acyliminium ion towards triple bonds has been proven of great practical value in biogenetic heterocyclisation¹. Acetylene ring closure, however, is not always site specific although a substituted triple bond located in a 5,6 relationship to a developing cationic centre strongly prefers to form a five-membered ring².

The occurrence of a wide variety of alkaloids of the pyrrolizidine type coupled with the current high interest in its synthesis³ necessitated the development of a method for preferential formation of five-membered rings. The latter objective is achieved via the introduction of suitably functionalized triple bond synthons⁴ as is exemplified by a short and efficient synthesis of (\pm) -trachelanthamidine and (\pm) -isoretronecanol.

As was envisaged on the basis of previous experiences substitution of the terminal acetylene hydrogen atom by a group X capable of stabilizing an exocyclic vinyl cationic species \underline{A} could lead to pyrrolizidine derivatives. In the latter way the slightly unfavorable ringstrain effects associated with the inter mediacy of \underline{A} thereby favouring the endocyclic species \underline{B} are adequately compens-

4411

ated by mesomeric stabilization of the linear vinyl cation⁵.

Indeed it was found that for X = phenyl exclusive formation of pyrrolizidine products occurred. Thus upon reduction of the imid $\underline{1}^6$ and cyclisation of the so-obtained ethoxylactam $\underline{2}$ in formic acid (144 hr, r.t.) and subsequent acid hydrolysis (2M HCl) a quantitative formation of a 55:45 mixture of the epimers $\underline{3}$ and $\underline{4}$ was observed. According to 1 H NMR and TLC analysis no trace of a 5,6 fused product appeared detectable. Base treatment of the epimer mixture (K₂CO₃/ DMF, 96 hr, r.t.) effected a complete isomerisation of $\underline{4}$ into $\underline{3}$. M.p. $\underline{3}$ 91-93°C (diisopropylether), 1 H NMR (CDCl₃): δ 7.38-8.02 (m, 5H, Ar<u>H</u>); 4.34 (m, 1H, H₈, J_{1,8}= 8.0 Hz); 3.76 (m, 1H, H₃); 3.50 (m, 1H, H₁); 3.21 (m, 1H, H₃); 2.15-2.87 (m, 4H); 1.71-2.00 (m, 1H, H₇). No attempt to purify $\underline{4}$ was made while tentative assignment of stereochemistry of $\underline{3}$ occurred on the basis of a 360 MHz 1 H NMR analysis and upon comparison with other results (vide infra).

Upon substitution of X = Sphenyl and following the analogous procedure for the imid $\underline{5}^{6}$ the conversion (HCOOH, r.t. 72 hr 1.5 M HCl) of the ethoxylactam $\underline{6}$ furnished a 4:1 mixture of epimers $\underline{7}$ and $\underline{8}$ in 80% yield after purification. Chromatographic separation afforded the pure C-1 epimers: $\underline{7}$, m.p. 69.0-70.5° (ether), ¹H NMR (CDCl₃): δ 7.42 (m, 5H, Ar<u>H</u>); 4.11 (m, 1H, H₈), J_{1,8}=8.2 Hz); 3.67 (m, 1H, H₃); 3.22 (m, 1H, H₃); 2.88 (m, 1H, H₁); 2.78-2.67 (m, 1H, H₆); 1.96 (m, 1H, H₇). The data of $\underline{8}$ are: m.p. 94.5-95°C (dip), ¹H NMR (CDCl₃): δ 7.36 (m, 5H, Ar<u>H</u>); 4.16 (m, 1H, H₈, J_{1,8}=7.2 Hz); 3.75 (m, 1H, H₃); 3.25 (m, 1H, H₁); 3.06 (m, 1H, H₃). The J_{1,8} values were determined from a 250 MHz ¹H NMR analysis. Of additional interest in this cyclisation is the fact that the synthetically valuable phenylthioesters⁸ are formed and can be isolated which may be of

 $\frac{1}{2} X = Phenyl ; Y = O \qquad \frac{3}{2} X = Phenyl$ 2 X = Phenyl ; Y = H,OEt5 X = SPhenyl ; Y = O3 X = SPhenyl ; Y = OX = SPhenyl ; Y = H OEt

<u>4</u> X = Phenyl 8 X = SPhenyl

 $\begin{array}{rrrr} R_{1} & \underline{9} & R_{1} = CH_{2}OH \ ; & R_{2} = H \\ R_{2} & \underline{10} & R_{1} = H \ ; & R_{2} = CH_{2}OH \end{array}$

further use in the synthesis of more complex systems.

The trans $H_{1,8}$ configuration of 7 is ascertained by LAH-redn (4 hr, 70°C, THF) to (\pm) -trachelanthamidine (9); m.p. picrate 173-174.5° (ipa)⁹, spectral data in accordance with literature assignments. Similarly 8 was reduced to (±)-isoretronecanol (10)^{3b}; m.p. picrate 189-191°C (EtOH).

The foregoing results convincingly demonstrate the utility of α -acyliminium ions in this conceptually new type of heterocyclisation.

ACKNOWLEDGEMENT

We are grateful to Mr. C. Kruk and Mr. K. Nicolay (University of Groningen) for the recording of the 250 and 360 MHz ¹H NMR spectra.

References

- 1. Tj. Boer-Terpstra, J. Dijkink, H.E. Schoemaker and W.N. Speckamp, <u>Tetrahedron</u> <u>Lett.</u>, 939 (1977); J. Dijkink and W.N. Speckamp, <u>Ibid.</u>, 935 (1977); J.B.P.A. Wijnberg and W.N. Speckamp, Ibid., 3963 (1975).
- 2. W.S. Johnson, <u>Biorg.Chem.</u>, <u>5</u>, 51 (1976) and cited references; L.G. Kozar, R.D. Clark and C.H. Heathcock, <u>J.Org.Chem.</u>, <u>42</u>, 1387 (1977); P.T. Lansbury, T.R. Demmin, G.E. Dubois and V.R. Haddon, <u>J.Am.Chem.Soc.</u>, <u>97</u>, 394 (1975).
- 3a H.W. Pinnick and Y.-H. Chang, Tetrahedron Lett., 10, 837 (1979);
- b S. Danishefsky, R. McKee and R.K. Singh, <u>J.Am.Chem.Soc</u>., <u>99</u>, 4783 (1977);
- c S.R. Wilson and R.A. Sawicki, J.Org.Chem., <u>44</u>, 287 (1979).
- 4. W.S. Johnson, L.R. Hughes, J.A. Kloek, T. Niem and A. Shenvi, <u>J.Am.Chem.Soc.</u>, <u>101</u>, 1279 (1979);
 W. Tagaki, Organic Chemistry of Sulfur, S. Oae Ed., Plenum Press, New York and London, 1977, chapter 6.
- 5. M. Hanack, <u>Acc.Chem.Res.</u>, <u>9</u>, 364 (1976); P.J. Stang, <u>Prog.Phys.Org.Chem.</u>, <u>10</u>, 205 (1973); P.E. Peterson and D.W. Vidrine, <u>J.Org.Chem.</u>, <u>44</u>, 891 (1979).
- 6. The starting imides are obtained via the oxidation-reduction coupling technique⁷ of succinimide with the appropriate alcohols. 1-Phenylbut-1-yn-4-ol is easily prepared by reaction of lithium phenylacetylide with ethylene-oxide followed by hydrolysis. Phenylthiolation of the dianion of but-3-yn-1-ol with diphenyldisulfide yields 1-phenylthio-1-but-1-yn-4-ol. All new compounds gave correct analytical data.
- 7. O. Mitsunobu, M. Wada and T. Sano, <u>J.Am.Chem.Soc</u>., <u>94</u>, 679 (1972).
- 8. T.G. Back, <u>Tetrahedron</u>, <u>33</u>, 3041 (1977); S. Masamune, Y. Hayase, W. Schilling, W.K. Chan and G.S. Bates, <u>J.Am.Chem.Soc</u>., <u>99</u>, 6756 (1977).
- 9. N.J. Leonard and T. Sato, <u>J.Org.Chem</u>., <u>34</u>, 1066 (1969).

(neceived in UK 7 September 1979)